問(wèn)題已解決
老師好,為什么(F/A,i,n, n+1)= (F/A,i, n)+ F/A,i, n)
溫馨提示:如果以上題目與您遇到的情況不符,可直接提問(wèn),隨時(shí)問(wèn)隨時(shí)答
速問(wèn)速答(F/A,i,n+1)= (F/A,i, n)+ (F/P,i, n)
(1)我們一步步推導(dǎo)
(F/A,i,n)=[(1+i)^n-1]/i
所以,(F/A,i,n+1)=[(1+i)^(n+1)-1]/i
?(F/P,i, n)=(1+i)^n
(2)該式子的等式右側(cè)
(F/A,i, n)+ (F/P,i, n)
=[(1+i)^n-1]/i+(1+i)^n
=[(1+i)^n-1]/i+[(1+i)^n×i]/i
=[(1+i)^n-1+?(1+i)^n×i ?]/i
=[(1+i)^n-1+?(1+i)^n×i??]/i
=[(1+i)^n×(1+i)-1]/i
=[(1+i)^(n+1)-1]/i
=(F/A,i,n+1)
2022 04/10 21:24
閱讀 412